"

欢迎来到AG厅总部_AG_AG公司-首页(yabovip6666.cn)全新升级娱乐网站。AG厅总部_AG_AG公司-首页综合各种在线游戏于一站式的大型游戏平台,经营多年一直为大家提供安全稳定的游戏环境,AG厅总部_AG_AG公司-首页致力于提供全球客户有价值的游戏,为用户提供优质服务。

    <address id="fdvj7"></address>
      <sub id="fdvj7"></sub>
      <sub id="fdvj7"></sub>

      <sub id="fdvj7"></sub>
          <sub id="fdvj7"></sub>

          <address id="fdvj7"></address>
            <sub id="fdvj7"></sub>

            <thead id="fdvj7"></thead>
            <address id="fdvj7"></address>

            <font id="fdvj7"></font>

                <form id="fdvj7"></form>
                <address id="fdvj7"></address>

                    <sub id="fdvj7"></sub>

                    "
                    您现在的位置: 教学机构>> 数学科学学院>> 学术动态

                    学术动态

                    学术报告预告:On the equivalence of several classes of quaternary sequences with optimal autocorrelation and length 2p

                    发布时间:2020年08月20日 点击数: 字号:【小】 【大】

                    学术报告预告:On the equivalence of several classes of quaternary sequences with optimal autocorrelation and length 2p

                    ?

                    报告题目:On the equivalence of several classes of quaternary sequences with optimal autocorrelation and length 2p

                    摘要:Quaternary sequences with optimal auto-correlation property are preferred in applications. Recently, several classes of optimal quaternary sequences of period $2p$, which are all closely related to the cyclotomic classes of order 4 with respect to $\mathbb{Z}_p$ were introduced in the literature. However, less attention has been paid to the equivalence between these known results. In this report, we introduce the unified form of this kind of quaternary sequence to classify these known results and then conclude the unified forms of these optimal quaternary sequences. By doing this, we disclose the relationship between the optimal quaternary sequences derived from different methods in the literature. This talk is based on a joint works with P. Qiao and Y. Yang.

                    报告人:柯品惠

                    报告人简介:柯品惠,福建师范大学教授,博士生导师,中国密码学会会员,福建省教育学会数学教学委员会常务理事。2006年获北京邮电大学密码学博士学位。曾多次访问新加坡南洋理工大学Coding and Cryptography Group。主要研究方向是伪随机序列的设计及分析、现代密码学中的布尔函数。在DCC, AAECC, IEEE IPL 等国内外著名学术期刊发表论文多篇。已主持完成了国家自然科学基金青年项目、福建省自然科学基金面上项目等,并曾获得福建师范大学首批青年骨干教师培养基金资助。

                    报告时间:2020年8月21日9:00-11:00

                    报告地点:腾讯会议

                    ?

                    ?

                    [打印文章]
                    AG厅总部_AG_AG公司-首页

                      <address id="fdvj7"></address>
                        <sub id="fdvj7"></sub>
                        <sub id="fdvj7"></sub>

                        <sub id="fdvj7"></sub>
                            <sub id="fdvj7"></sub>

                            <address id="fdvj7"></address>
                              <sub id="fdvj7"></sub>

                              <thead id="fdvj7"></thead>
                              <address id="fdvj7"></address>

                              <font id="fdvj7"></font>

                                  <form id="fdvj7"></form>
                                  <address id="fdvj7"></address>

                                      <sub id="fdvj7"></sub>